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In the paper we present an effective method to compute forces in external flows of
viscous incompressible fluids. Itis an extension of the variational approach proposed
initially by Quartapelle and Napolitano (1988IAA J. 21, 911) and is particularly
well adapted to the case where a vortex method is used to solve the hydrodynamic
problem. The derived formula involves a harmonic functipand a convenient
method for its determination is also shown. The effectiveness of the presented ap-
proach is confirmed by computational examplesy 2000 Academic Press
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1. INTRODUCTION

Determination of forces is crucial in many physical and engineering problems enco
tered in fluid dynamics. In the present paper we are interested in an approach whi
particularly applicable when the fluid motion is determined using a vortex method. Bel
we will consider the external viscous flow past a single body whose shape may evolv
time. The flow domain will be denoted and the boundary of the bod2. In general we
will thus haveQ = Q(t) anda2 = a2 (t); in the following, however the symbaolwill be
dropped. We will restrict our attention to deformations which preserve the volume (the ¢
in the plane case) of the obstacle and in which the impermeability condition is satisfied.
origin of the coordinate system will remain fixed at the obstacle. By definition, the for
which is acting on the body can be expressed in the following way,

F:FP+FM:_%Q(—pn+Eﬂ~n)dU, 1)
]
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whereF” andF* represent the contributions of pressure and viscous force, respectively
is pressuren is the unit normal (directed into the body) afigi denotes the viscous stress
tensor. For the incompressible Newtonian fluid it is given by

M, = u[VV + (VW)T], 2)

with u representing the viscosity of the fluid asV the velocity gradient, defined as
[VV]i; = % Throughout the paper we assume viscogityo be constant everywhere.
Formula (1) combines two clearly distinct physical effects. On the one hand there is
contribution of the viscous stressﬁg -n, which are defined locally. This means that giver
the velocity field, which is itself a non-local quantity, they can be obtained by computing 1
velocity derivatives, and therefore the accuracy of this operation principally depends or
resolution in the proximity of the boundary. On the other hand, presgusenon-local
in that its value at a particular point depends on velocity and vorticity fields in the whe
flow domain. This makes evaluation BF more difficult, especially in the case of open
flow systems. Furthermore, application of formula (1) is particularly inconvenient when
hydrodynamic problem is cast in terms of the non-primitive variables, i.e., the moment
equation is expressed in the velocity—vorticity (or streamfunction—vorticity) rather than
velocity—pressure form [2]. In this case pressure may only be obtained as a solution
separate problem [3]. Consequently, efficient computation of the pressure contributio
the hydrodynamic force may in some cases cause problems. At the same time it is
known that in many important flow configurations, e.g., bluff body wakes, its contributi
to the total force is dominating.

An alternative approach consists in using toeticity impulserelation [4] and yields

F= 1 d/rxwd§2+g% r x (nxV)do, 3)
Q dt Jiq

D-1dt
wherer denotes the position vector aidis the spatial dimensiori= 2 or D = 3). In the
aboveQ is the flow domain extending to infinity. This formula does not explicitly refer t
the pressure information. From the computational point of view it has, however, a num
of shortcomings. In the first place it involves numerical differentiation resulting in a noi
signal, particularly when a low-order time stepping scheme is used. Furthermore, it has
disadvantage that vorticity in the near and far wake contribute equally to the hydrodyna
force [5]. This approach was recently revisited in [6] and [7], where the momentum bala
in some finite control volume (CV) surrounding the body was considered. A family
relations was derived, all of them having the structure

1 d .
F=—-—— —/ r x wdQ + {integral over the outer surface of the €V
D—-1dt Jcv

+ {integral over the body surfage 4)

In this case, as well, time differentiation is required to compute force. Furthermore, us
the formulas (3) and (4), one is not able to separate the contributions of pressure and vis
stresses, which might be desirable in some applications.

It is thus of much practical and theoretical importance to develop an approach wt
will alleviate the above difficulties. We will extend the variational procedure originall
presented in [1] and derive a formula for the pressure force which does not refer to pres
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information and uses only velocity and vorticity fields. Furthermore, it does not invol
time differentiation, apart from the time derivative of a boundary term. The latter, howe
can be computed using the data prescribed in the statement of the problem. At the
time, the contribution of vorticity to the force is taken with a weight diminishing with th
distance from the obstacle. In order to obtain the total force it will only be necessary
supplement the term representing the viscous stresses.

2. HYDRODYNAMIC FORCE—VARIATIONAL APPROACH

In this section we will present the derivation of the formula that allows one to comp
the pressure force in a convenient manner. We will first transform the relation (1). To |
end we will use the identity of vector calculus

f (VV)T-ndo-:/V(V-V)dQ, (5)
Q2 Q

where [VV)T . n]; = %nj (summation is implied when indices are repeated). The abo
integrals vanish when the field is divergence-free. This relation holds for any body witt
shape changing in time. Using this property along with (1) and (2) one can show that
well-known formula

F= f [pn — w(VV + (VV)T) - nldo = f [pn — w(VV — (VV)T) - n] do
IQ IR

=% (pn + un x w)do (6)
a0

remains valid for any body with time dependent shage= 9% (t).

Following the idea originally presented in [1], we consider the regowhich is the
exterior of the body. It is bounded by two surfaces (curves in the plane daseyhich
coincides with the body surface, afid, which is the outer circumference. Now we define
the functionny so that

n-Vinlr, = —€-n @)
n-Viglr, = 0,

where e, is the versor of the X-axis in the Cartesian coordinate system. The functi
nyx is thus the solution of the Neumann problem for the Laplace equation. The solvabi
condition isfroeX -ndo =0and itis straightforward to verify that it is satisfied. The solutior
is defined up to an additive constant, which will be adjusted below, and has the prop
that for large distancesit behaves IikeO(%) in 2D andO(r%) in 3D. The functionyy will

be used to determine the X-component of the pressure Fétde order to obtain the other
componentslﬂ,’ andFY}), the corresponding functiomg andn, will have to be introduced.
They are defined by a problem similar to (7) with the boundary conditiohreplaced
by —e, - n and—e;, - n, accordingly. In the following considerations we will focus on the
drag forceFy. First we express the pressure te#¥ p using the Navier—Stokes equation
(with densityp set equal to unity)

\%
—Vp=88—t+(V'V)V+MVXW~ (8)



234 PROTAS, STYCZEK, AND NOWAKOWSKI

It is then projected (in the sense of the Hilbert spagé<2)) on the gradien¥ny. Each
termin Eq. (8) is multiplied by n and then integrated over. Integrating by parts, using
the incompressibility constraint and the boundary conditiongfawe obtain [1]

" oV
Fe= (nxp>da=f nxn-()dawy{ n- (W x Vi) do
To oUI’y ot FoUl'y

+ / Vi - [(V - V)V] de, (9)
Q

whereny = e, - n. Note that even though the above relation represents the pressure fo
one of the boundary terms involves viscosity. In this work we consider general bound
shapes, including those with geometric singularities (i.e., corners). In that case the
normal vector may be discontinuous, with its value at singular points equal to the mea
the two limits. This is, however, not a problem, since (7) can be solved in the weak sel
whereas in all the remaining caseappears in integrand expressions.

For the sake of simplicity we will now restrict ourselves to the two-dimensional (2D) cac
the extension to 3D is, however, straightforward. We will therefore use thedemour
instead obodyand denote = w, (all the remaining vorticity components vanish). In ordel
to further simplify the relation we introduce the following assumptions:

e place the outer perimetéh at infinity (I'y — I'w); consequently, at infinityy falls
off to a constant which will be set equal to zero,

e assume that for any finite time Ot < oo vorticity vanishes at infinity like
w~e"*: this is true for all the flows in which the initial vorticity has compact support, a
in finite time advection cannot take vorticity to infinity and the above asymptotic formu
is consistent with the properties of the diffusion equation (this category comprises all
flows of interest),

e in the 2D case assume that the difference between velocity and the f
stream ||V — V| decays at infinity like O(riz); this assumption implies that
JowdQ2+ §. V-tdo =0 and that there is no net circulation in the flow domain, an:
in fact this is a necessary constraint on plane flows, since otherwise the part of the kir
energy associated with vortical motion of the fluid would not be finite [8].

It must be observed that none of the above assumptions is restrictive. In the derivation b
we will exploit the asymptotic properties of integrals taken over the coriigurHere we
remark that such integrals vanish when their integrand expressions dec@,(}gke) with

€ > 0. It is now possible to carry out further simplifications. The non-linear term in (
transforms as follows:

2
/Vﬂx-[(V~V)V]dQ=/an'{VV—an)k]dQ
Q Q 2

V2
=/V~(an)dSZ—/an~(wak)dQ
Q 2 Q

& V2
= (n-Vr;X)—do—l—j{ (n-an)—da—/an-(wak)dQ
2 | 2 Q

I'o

V2
=—7{ nx—do—/Vr]X~(V><wk)dQ. (20)
r, 2 Q
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The integral over o, vanishes due to the external boundary conditiongafafny (Eq. (7)).

In Eq. (9) there are two integrals that are taken over the outer perimeter. The one invol
the viscous ternfu frxn - (w x Vny) do) vanishes because of the rapid decayand

nx at infinity. The other one can be transformed using the asymptotic representation fol
velocity field far from the obstacle,

V= voo(t)+c(t)+o( ) (11)

which is consistent with the third assumption introduced above. The term in question |
becomes

\ oo
?{ . (3 >77xd‘7 du nx’lde‘i‘—j{ nynxda—l—O( ) (12)
o\t Tdt Jr

The denvatwes‘“‘—m and dg;O represent the accelerations of the free stream compone
Voo = [Uso; Voo] and thus correspond to the added mass effect (in fact, this effect is a

represented by the analogous term taken on the cofigdun the next section we will derive

closed formulas for the integra§§°o Nyny do andfroo nynx do. As aresult the pressure drag

force is given by

\
F;:—/an-(wak)dQ—i—uj{ an~(nxwk)da+f (8 >nxd(7
Q To T'o ot

2
—f nxv—da—kd&?{ nxnxdo+—j{ nyx do. (13)
2 dt Jr. )

We can now supplement the contribution of the viscous strédsses ey - fro n x wk do,
which can be collapsed into the first boundary term and we finally obtain the expressior
the total drag force,

\Y/
sz—/ano(an)k)dQ—i—y, (nxa)k)~(an+ex)do+j{ <8 )nxdo
Q To To ot

v? duy
—j{ nx—da—i—L% nxnxdo—i——j{ Nyny do. (14)
T'o 2 dt e

As opposed to the standard approaches discussed in the Introduction, the derived for
does not involve time differentiation of the field quantities, except for the time derivative
the boundary velocity. The latter is, however, the boundary condition for the Navier—Sto
system and as such does not have to be calculated separately. Furthermore, the inte
expression inthe area integral in (14) is multiplied by the weighing fa¢tqr which decays

like O(r%). Consequently, the contribution of the vorticity far downstream is much smal
than that of the vorticity in the near wake. These are important computational advant:
over the formulas (3) and (4). In some particular cases the formula (14) may be fur
simplified. For example, the term involving the time derivative of the boundary veloc
vanishes when the contour has circular symmetry, or when there is no angular acceler:
In the case of solid body rotation the fourth term can be transformed using the Gre
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theorem

V2 ¢2r2 (pZ
n—da:%n—do:— nx(x? + y?) do
f}o X2 ro . 2 2 Jr,

¢2 0 2 2 -2

where A stands for the area of the contour apds the rotational velocity. This implies
that the term vanishes when the contour rotates about its center of mass, for the X
Y directions, respectively. As a result, when the obstacle is a fixed cylinder, or a rotat
circular cylinder, then the formula (14) consists of the first two integrals only plus the ter
corresponding to the free stream acceleration.

(15)

3. DETERMINATION OF THE FUNCTION n

To take advantage of formulas (13) and (14) it is necessary to compute the func
gradientVny (correspondinglyvny) in the domains2 and the value both ofy and of its
gradientVn, on the boundarg 2. As the solution of an external Neumann problem (7)
the functionny can be obtained in a number of different ways. In the following we wil
describe a method which is particularly suitable when the velocity and vorticity fields :
computed using a vortex approach. In that case the area integral in (14) simply reduci
a quadrature over the vorticity carriersoftex blob¥, their number being relatively high
(0O(10°—-1F)). At every instant of time it will therefore be necessary to evalajg at a
different set of points corresponding to the locations of the vortex blobs with ever increas
distance from the obstacle. Thus standard techniques based on an a priori evaluati
nx and Vny on a fixed grid inQ2 are inconvenient. We will now present an alternative
approach.

Inthe flow domairf2 the harmonic functiony can be represented using Green'’s formula
In the 2D case it takes the form

cogng, XQ)

1
xx = 5 X
nx(X) o f;gn (Q XQ|

1
do — — - Vnx) In|XQ| d
o= 5§ - Vr0NXQldo
XeQ,Qed2. (16)

The integrals in the above formula are taken over the contour boundary. The fupgti@n
can be obtained using the boundary integral equation

cogng, PQ)

1
X P - X
ix( )+nj£9n @

da:l}[ (n-VnoInPQdo P, Qedq. (17)
T Jag

This is the Fredholm equation of the second kind and can be solved using standard 1
niques. The integrand expression on the right hand side in (17) can be evaluated
the boundary condition from (7). In order to extend this approach to the spatial cz
the corresponding 3D versions of the kernel functions have to be substituted into
and (17). The gradieri¥ny can be calculated by applying integration by parts to the fol
mula (16),
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/\C

Qext

FIG. 1. Schematic division of the computational domain iftg andQey:.

1 Ng — 29 cogNg, XQ) i% ] XQ

XeQ, Qeaq, (18)

whereq = %. Using vortex methods, the above formula has to be independently evalue
for every single vorticity carrier, i.e., as many@s10°—1) times at every time step. This
is computationally intensive and therefore application of (18) is not convenient, especi
far from the contour where the variation of the functignis fairly slow.

To avoid this we will use a hybrid approach. We introduce a circle C (a sphere in the
case) with the diametdd¢ significantly larger then the characteristic dimension of the ol

stacle. As shownin Fig. 1, the computational domain is thus split intoyeW Qex: = 2):

e the interior annular regiofj,; between the obstacle and the circle C; in this domai
the functionyy varies fairly rapidly and the solution of the Neumann problem (7) is obtaine
using a finite element method (FEM) on a refined mesh,

e the regionQey external to the circle C where the functigpis varying fairly slowly;
the functionny is represented there as a Laurent series with rapidly decaying coefficie
the expansion is determined by matching the two solutions on the circle C.

Consequently, evaluation gf or Vi requires only either interpolation from the fixed grid
(in the case oiX € Qit), or summation of the power series with a small number of tern
(in the case oK € Qex). Even though there is some overhead cost related to the solutior
the problem inQj; and then determining the expansion coefficient®ig, the presented
method results in significant speed-up comparing with the approach based on formulas
and (18). Furthermore, it should be remarked that when the contour does not chang
time, the overhead calculations are performed once for all. Details for the solutions of
problem inQjn; andQey; are given below.

3.1. Solution of the Internal Problem

The Neumann problem in the regiéx can be solved using, for example, the weak for
mulation. The boundary condition ary follows from (7), whereas the boundary condition
on C can be generated using the formula (18). This, however, requires that the additi
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boundary value problem (17) be solved beforehand. Nevertheless, in certain impleme
tions of the vortex method (e.g., [9]), an analogous problem has to be solved in orde
determine the potential component of the velocity field. Consequently, in these two st
the same inverse matrix can be used, resulting in significant reduction of the overhead
related to matrix inversion. As mentioned above, the solution of an external Neumann p
lem is defined up to an additive constant. Below we will show how to fix this constant
that the solution will correspond to the functigp vanishing at infinity.

3.2. Solution of the External Problem

In the exteriorQey; of the circle C the harmonic functiom, can be represented as the
Laurent series

o) a o) RC k
nx(X, y) =R (Z Zk> = Z (r> [ cogky) + Bk sin(ke)], (19)

k=0 k=0

wherez=x + iy (i is the imaginary unit)Rc is the radius of the circle Qy, ¢) are the
polar coordinates of the poiK, y), andi denotes the real part of a complex number. The
numbergay, Bk} o are the expansion coefficients. They can be determined by performi
spectral (in terms of Fourier harmonics) analysis of the funatj@R, ¢) = 7 (¢) computed
on the circle C. In this evaluation the solutionSx},; can be used.

We will now adjust the indeterminate constant that appears in the solution of the Neum
problem. It is equal to the zeroth term in the expansion (19),

2
o = /O () dg, (20)

and is subtracted from the final solution. In fact the expansion coefficients decay very rap
and only a small numbeX of terms have to be retained to ensure the desired accuracy:.
the 3D case the functiomy is expanded in terms of spherical harmorﬁﬁf‘s{cos(e)),

00 ] Re I+1
(X, Y,2) = > paP¥(cog6))e (T) , (21)
k,1=0

where(r, 6, ¢) are the spherical coordinates of the pairty, z). As before, the expan-
sion coefficients are determined by performing spherical harmonic analysis. The additic
condition is also similar:

2 T
Yoo = / / 1@, o) sin@') do’ dyy'. (22)
0 0

Using the representation (19) for the functignwe are now able to evaluate the integrals
in (12),

21
f nyn do = Iim/ cosp)n(p)r do
o 0

r—o00

2 H
= lim {RC/ cos(cp)alcos(@jﬁlsm((p)r d(p+0(r}>:|
0

r—o00

= 7 Ry, (23)
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whereny or ny should be substituted for. Only the term corresponding to=1 has a
non-vanishing contribution to the integral.

4. EXAMPLE CALCULATIONS

In this section we present computational examples concerning the determination o
functionsny andny, and subsequent evaluation of the hydrodynamic force for some sim
flow configurations. In the simplest case, when the obstacle is a circular cylinder, the solL
is available in the analytical form. Itis straightforward to verify that thegr, 0) = Rg%"”
ny(r, 0) = RS and Vi, (r, ) = — 2 [cos20), sin20)]T, Vi (r,0) = —2[sin(20),
—c0920)]". These relations can be used to verify the accuracy of the algorithm whict
implemented to calculate the functign

One should observe that when the contour rotates without any change of shape, ¢
mination ofn, andny can be considerably simplified. Rotation of the contour by the ang
« implies that in the local frame of reference, deno¥tD Y¥, the global frameXOY is
rotated by the angle « (Fig. 2). Let the superscriptdenote quantities referred to the local
(i.e., rotated) frame of reference and 0 those expressed in the fixed frame. The bour
conditions for the problem (7) represent the projectinfwandn?, of the unit normah on
the axesX andY of the global reference system for the casg,adindry, respectively. Since
the contour does not deform, the corresponding projectigrandng remain unchanged,
and so do the solutiong andn§ in the local coordinate system. The projectioﬁsandn3
can therefore be expressed in term&iptindng in the following way:

n = n§ coge) + n§ sin(e)
) | (24)
ny = —ng sin(a) + nj coga).
Y
o
X
n & .—"7
X y ""o
n® ,»""‘
—"" o
ol
e ps nO \Al/ ny X
P 0:
* >
A
\
‘\
: 0
“\ nX

FIG. 2. Representation of the boundary condition for the problem (7) in the fixed (solid line) and rota
(dashed line) frames of reference.
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FIG. 3. Isolines of the functiom, (a) andn, (b) for the case of the square cylinder.

Consequently, using linearity of the Neumann problem with respect to the boundary c
ditions, the functiong? andng can be represented as

0 o o
ny = any — bn
X X Y (25)

ny = bng + ang,
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FIG. 4. The amplitudes of the coefficiengg= /a2 + B2 the expansion (19) as a function of the indefor
the case of the square cylinder (they are the same for:gaghdz,).

wherea= coqw) andb= —sin(«x). These are the functions that should be used in tt
relations (9) through (14). Consequently, for any rotation anglie solutions;® andn‘y)
can be recovered as a linear combination of the reference solujoasd n§ with the
coefficients depending on the rotation angle. This significantly reduces the overhead
in the situation where the contour rotates as a solid body.

In Fig. 3 we show the isolines ofy andny for the case of the square cylinder. The
circle C has the radiuB: = 3%, wherelL is the characteristic dimension of the obstacle
The internal problem was solved using a second-order accurate finite element method
roughly 16000 elements. In the computation of the external solublos 64 terms were
used. In Fig. 4 we present the log—log plots of the magnitudes of the expansion coeffici
Y = Vai + B2 as a function of the wavenumble(the plots are the same for bajh and
ny). Note the rapid decay of the coefficients.

Since in this work we are mainly concerned with the derivation of an efficient formu
for the pressure force, we begin the presentation of our results with the time evolutiol
the pressure drag and pressure lift coefficients, defineg asF,f’/%TL andcl = F;’/%L,
respectively. They were computed for the 2D wake flow past a square cylinder (Figs. 5a
6a). The Reynolds number F_%e# was equalto 1000. In Figs. 7a and 8awe show the sar
parameters obtained in the case when the obstacle was rotating with the normalized an
velocity % = 0.5. For the purpose of verification the coefficienfsandc] presented in
Figs. 5a through 8a were computed using two different methods: (i) the formula (13)
(i) integration of the pressure distribution on the contour. All the simulations were p
formed using the random vortex blob method described in [9] with the number of vortic
carriers being on the order of L0Pressure on the contour was determined using a fini
element method to solve the weak form of Eq. (8). The solution method is described in
In Figs. 5b through 8b we show the time evolution of the total drag and lift coefficier
for the same flow configurations. Again the coefficieqis= FX/%zL andc_ = Fy/&zL
are computed in two different ways: (i) by applying formula (14), and (ii) by using tt
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FIG. 5. Time histories of the pressure drag (top) and the total drag (bottom) coefficfeatsdc, for the
wake flow past a square cylinder at R4000. The coefficients are computed using different methods (see inset
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--------- pressure distribution
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(b) R impulse formula (Eq.(3))
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FIG. 6. Time histories of the pressure lift (top) and the total lift (bottom) coefficiefimndc, for the wake
flow past a square cylinder at Re1000. The coefficients are computed using different methods (see insets).
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0.5 i —— proposed approach (Eq.(13))
@ | e pressure distribution

3.0

0.5 —— proposed approach (Eq.(14))
w | impulse formula (Eq.(3))
0.0
10 12 14 16 18 20 22
T=t-U/L

FIG. 7. Time histories of the pressure drag (top) and the total drag (bottom) coefficfeatsdc, for the
wake flow past a rotating square cylinder at-R£000 and the normalized rotational veloc'&— =0.5. The
coefficients are computed using different methods (see insets).

impulse relation (3). Because of noise, the signals had to be artificially smoothed, wi
was done by performing running averages over 15 adjacent samples in all cases. Neve
less, the signals obtained using the impulse formula (3) still remain irregular, thus imply
a much higher level of noise.

As a first remark one should mention the very good agreement between the pres
and the total lift coefficients]” and c_ obtained using different methods in both flow
configurations (Figs. 6 and 8). The agreement is slightly worse as regards the total
co (Figs. 5b and 7b). The reason for this is the effect of the viscous fet¢avhich
contributes to the drag force while having no net effect on the lift. Consequently, evalua
of the former depends on the details of the boundary layer, which may have not
sufficiently resolved in the simulations. The impulse formula (3) does not explicitly ref
to the boundary layer information, and therefore the discrepancies observed in Figs
and 7b may be attributed to the inaccuracy related to evaluatiéi .oT his conclusion
is also confirmed by the good agreement obtained for the pressure drag coeffifient
(Figs. 5a and 7a). The irregular behavior of the pressure drag coeffifienmputed using
the pressure surface distribution may be caused by the finite domain effects involve
its determination. As already remarked, pressure is computed using a grid-based st
and the effect of the vorticity which is outside the computational domain is representec
suitable boundary terms. The influence that truncation of the computational domain 1
have on the calculated force was discussed in [7]. Finally, it should be stressed that i
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3 — proposed approach (Eq.(13))
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FIG. 8. Time histories of the pressure lift (top) and the total lift (bottom) coefficiefisndc, for the wake
flow past a rotating square cylinder at R4000 and the normalized rotational velocﬁg =0.5. The coefficients
are computed using different methods (see insets).

the cases the proposed formulas (13) and (14) resulted in signals which were much
regular than those obtained by the other methods.

5. CONCLUSIONS

In the present paper we have derived an efficient formula for the computation of
pressure forces in hydrodynamics. Itis a variational approach based on velocity and vort
fields and is therefore particularly well suited for the case when a vortex method is u
to solve the flow problem. The total force can be recovered by supplementing the visc
term F#. Our formula is robust and comparing to the standard techniques based on
exhibits a number of computational advantages. In the first place it does not involve t
differentiation which means that good results may be obtained with low order time stepy
schemes. Additionally, the contribution of vorticity diminishes with the distance from tl
obstacle which is due to the presence of the fa€tpdecaying IikeO(r%). As aresult, the
loss of accuracy related to particle merging or core spreading performed far downstr:
in certain implementations of the vortex method (e.qg., [5]) will not significantly influenc
the computation of forces. Within the new approach it is required that a family of t
harmonic functiong should be available. They are the solutions of the Neumann proble
for the Laplace equation and as such can be readily computed. A convenient metho
their evaluation is also proposed. The formula (14) has however the disadvantage tt
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involves the boundary value of vorticity. Consequently, the obtained results may depen
the details of boundary layer resolution, particularly for the drag force.
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